pairwise distinguishability - significado y definición. Qué es pairwise distinguishability
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es pairwise distinguishability - definición

PROPERTY OF A SET OF RANDOM VARIABLES ASSERTING INDEPENDENCE FOR ANY PAIR OF VARIABLES.
Pairwise independent

Pairwise independence         
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent.Gut, A.
Pairwise error probability         
Pairwise Error Probability
Pairwise error probability is the error probability that for a transmitted signal (X) its corresponding but distorted version (\widehat{X}) will be received. This type of probability is called ″pair-wise error probability″ because the probability exists with a pair of signal vectors in a signal constellation.
Pairwise comparison         
PROCESS OF COMPARING TWO ENTITIES TO DETERMINE WHICH IS PREFERRED
Paired-comparison analysis; Paired Comparison Analysis; Paired comparison; Paired comparisons; Pairwise comparisons; Matched-pair analysis; Method Of Paired Comparisons; Paired comparison analysis; Matched pairs; Pairwise preference
Pairwise comparison generally is any process of comparing entities in pairs to judge which of each entity is preferred, or has a greater amount of some quantitative property, or whether or not the two entities are identical. The method of pairwise comparison is used in the scientific study of preferences, attitudes, voting systems, social choice, public choice, requirements engineering and multiagent AI systems.

Wikipedia

Pairwise independence

In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated.

A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) F X , Y ( x , y ) {\displaystyle F_{X,Y}(x,y)} satisfies

F X , Y ( x , y ) = F X ( x ) F Y ( y ) , {\displaystyle F_{X,Y}(x,y)=F_{X}(x)F_{Y}(y),}

or equivalently, their joint density f X , Y ( x , y ) {\displaystyle f_{X,Y}(x,y)} satisfies

f X , Y ( x , y ) = f X ( x ) f Y ( y ) . {\displaystyle f_{X,Y}(x,y)=f_{X}(x)f_{Y}(y).}

That is, the joint distribution is equal to the product of the marginal distributions.

Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " X, Y, Z are independent random variables" means that X, Y, Z are mutually independent.